Article
Scikit-Learn Cheatsheet
Open-source ML library for Python. Built on NumPy, SciPy, and Matplotlib.
Scikit-learn is a library in Python that provides many unsupervised and supervised learning algorithms. It’s built upon some of the technology you might already be familiar with, like NumPy, pandas, and Matplotlib!
As you build robust Machine Learning programs, it’s helpful to have all the sklearn
commands all in one place in case you forget.
Linear Regression
Import and create the model:
from sklearn.linear_model import LinearRegression your_model = LinearRegression()
Fit:
your_model.fit(x_training_data, y_training_data)
.coef_
: contains the coefficients.intercept_
: contains the intercept
Predict:
predictions = your_model.predict(your_x_data)
.score()
: returns the coefficient of determination R²
Naive Bayes
Import and create the model:
from sklearn.naive_bayes import MultinomialNB your_model = MultinomialNB()
Fit:
your_model.fit(x_training_data, y_training_data)
Predict:
# Returns a list of predicted classes - one prediction for every data point predictions = your_model.predict(your_x_data) # For every data point, returns a list of probabilities of each class probabilities = your_model.predict_proba(your_x_data)
K-Nearest Neighbors
Import and create the model:
from sklearn.neigbors import KNeighborsClassifier your_model = KNeighborsClassifier()
Fit:
your_model.fit(x_training_data, y_training_data)
Predict:
# Returns a list of predicted classes - one prediction for every data point predictions = your_model.predict(your_x_data) # For every data point, returns a list of probabilities of each class probabilities = your_model.predict_proba(your_x_data)
K-Means
Import and create the model:
from sklearn.cluster import KMeans your_model = KMeans(n_clusters=4, init='random')
n_clusters
: number of clusters to form and number of centroids to generateinit
: method for initializationk-means++
: K-Means++ [default]random
: K-Means
random_state
: the seed used by the random number generator [optional]
Fit:
your_model.fit(x_training_data)
Predict:
predictions = your_model.predict(your_x_data)
Validating the Model
Import and print accuracy, recall, precision, and F1 score:
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score print(accuracy_score(true_labels, guesses)) print(recall_score(true_labels, guesses)) print(precision_score(true_labels, guesses)) print(f1_score(true_labels, guesses))
Import and print the confusion matrix:
from sklearn.metrics import confusion_matrix print(confusion_matrix(true_labels, guesses))
Training Sets and Test Sets
from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2)
train_size
: the proportion of the dataset to include in the train splittest_size
: the proportion of the dataset to include in the test splitrandom_state
: the seed used by the random number generator [optional]

Happy Coding!